

0040-4039(94)02118-X

Synthesis and Diels-Alder Reactions of (S)-3-Chloro and (S)-3-Ethyl-2-p-tolylsulfinyl-1,4-benzoquinones[†]

M. Carmen Carreño*, José L. García Ruano*, Miguel A. Toledo and Antonio Urbano. Departamento de Química (C-I), Universidad Autónoma. Cantoblanco, 28049-Madrid, SPAIN.

Abstract: The synthesis of the title compounds in enantiomerically pure form is described. Their cycloadditions with cyclopentadiene and 2,3-dimethyl-1,3-butadiene in the presence of $ZnBr_2$ take place on the unsubstituted dienophilic double bond C₅-C₆ giving access to optically active 4a,5,8,8a-tetrahydronaphthoquinones with a diastereoisomeric excess ranging from 40 to 72%.

The ability of the sulfinyl group to control the π -facial diastereoselectivity of Diels-Alder cycloadditions when situated both on the dienophile¹ and on the diene² partner has been subjected to considerable study in recent years. High diastereoselectivities could be achieved both in thermal and catalytic processes by using sulfinyl dienophiles, being possible to get both configurations of the new chiral centers generated by choosing the appropriate experimental conditions^{1a-c}. Our previous work on asymmetric Diels-Alder reactions of sulfinylnaphthoquinones^{1b} illustrated the successful use of these chiral synthons for the construction of enantiomerically pure 1,4-dihydro-9,10-anthraquinones in both configurations through the tandem cycloaddition/pyrolytic sulfoxide elimination. The potential synthetic usefulness of enantiomerically pure 2-ptolylsulfinyl-1,4-benzoquinone derivatives as chiral syntheso of p-benzoquinones, prompted us to undertake the investigation of their dienophilic behaviour. Our preliminary results^{1a} on the simplest (S)-2-p-tolylsulfinyl-1,4-benzoquinone (1) showed a higher reactivity of the unsubstituted dienophilic double bond C₅-C₆ with cyclic dienes (Scheme 1). High π -facial diastereoselectivities were achieved in the reaction of 1 with cyclopentadiene and the relative configuration of the resulting adducts could be controlled by using different Lewis acids. Acyclic dienes reacted with 1 through the sulfinyl substituted double bond C₂-C₃ but the instantaneous sulfoxide elimination and subsequent aromatization prevented the isolation of chiral products.

Scheme 1

In order to avoid the undesired evolution of these adducts, we thought of introducing different substituents on C_3 of the sulfinylquinone system. With this aim, we decided to study the dienophilic behaviour of 3-chloro and 3-ethyl-2-p-tolylsulfinyl-1,4-benzoquinones **3a** and **3b** which would give rise to optically active substituted tetrahydro-1,4-naphthoquinones. The results are described herein.

The synthesis of compounds 3 (Scheme 2) was achieved in good optical and chemical yields starting from enantiomerically pure 1 which had been previously obtained³. Reaction of 1 with TiCl₄ afforded (S)-3chloro-1,4-dihydroxy-2-p-tolylsulfinylbenzene (2a)⁴ in 82% yield, whereas the addition of ZnEt₂ to 1 gave 3ethyl substituted sulfinylhydroquinone $2b^4$ in 95% yield. Although the starting quinone 1 showed several reactive positions, only the products resulting from reaction on C₃ were detected, probably due to the previous association of the reagents to the sulfinylic oxygen. Oxidation of hydroquinones 2 with cerium (IV) ammonium nitrate (CAN) gave the desired sulfinylquinones 3a and 3b⁴ in 88% and 95% yield respectively (Scheme 2).

The cycloadditions of **3a** and **3b** with cyclopentadiene, chosen as a model cyclic diene, were carried out in CH₂Cl₂ at -20°C and afforded mixtures of two diastereoisomeric *endo* adducts 4⁴ and 5⁴ respectively (Scheme 3) that could be separated by flash chromatography (CH₂Cl₂:acetone 45:1). Their relative ratios were determined from the ¹H-NMR spectra of the crude reaction mixtures by integration of well separated signals and are recorded in Table I. Compounds 4 and 5 resulted from the reaction on the unsubstituted dienophilic double bond C₅-C₆ of the p-benzoquinone systems, the best facial diastereoselectivity of the process being achieved in the presence of ZnBr₂.

Table 1. Diels-Alder reactions of 3a and 3b with cyclopentadiene (4-5 eq) at -20°C.

Entry	Substrate	Cat (eq)	Time	Yield(%)	Adducts	Ratio	d.e.			
1	3a		1 h	85	4a : 5a	50 : 50	0			
2	3a	ZnBr ₂ (2)	5 min	90	4a : 5a	80:20	60			
3	3b		1 h	90	4b : 5b	50:50	0			
4	3b	ZnBr ₂ (2)	5 min	87	4b : 5b	70:30	40			

The absolute configuration of *endo* adducts **4b** and **5b** was deduced from the similarity of their ¹H-NMR parameters with those of the adducts resulting in the reaction of (S)-2-p-tolylsulfinyl-1,4-benzoquinone (1) with cyclopentadiene ^{1a}. This criterium was not valid for chloroderivatives and their configurational assignment was established by chemical correlation⁵. Thus, compounds 4 show the R_{4a} , S_5 , R_8 , S_{8a} , S_5 and 5 the S_{4a} , R_5 , S_8 , R_{8a} , S_5 configuration in their chiral centers.

The reaction of quinones 3 with 2,3-dimethyl-1,3-butadiene, used as a model acyclic diene, afforded mixtures of diastereoisometric tetrahydronaphthoquinones 6 and 7 (Scheme 4) that could not be separated by flash chromatography and whose relative ratios depended on reactions conditions (Table 2).

Table 2. Diels-Alder reactions of 3a and 3b with 2,3-dimethyl-1,3-butadiene (10 eq) at -20°C.

Entry	Substrate	Cat (eq)	Time	Yield(%)	Adducts	Ratio	d.e.
1	3 a		2 d	92	6a : 7a	67:33	34
2	3a	ZnBr ₂ (2)	1 h	87	6a : 7a	86:14	72
3	3b ^a		4 d	94	6b : 7b	60 : 40	20
4	3b	$ZnBr_2(2)$	бh	85	6b : 7b	70:30	40

a. This reaction was carried out at 0°C.

Contrary to the results obtained in the reactions of 1 with there kind of dienes^{1a}, 2,3-dimethyl-1,3butadiene reacted with quinones 3 only through C_5 - C_6 unsubstituted double bond indicating that steric and electronic effects of the substituents on C_2 and C_3 rendes difficult the approach of the acyclic diene to the later. The configurational assignment of adducts 6 and 7 was based on the similar behaviour of quinones 3 in the cycloaddition with cyclopentadiene and 2,3-dimethyl-1,3-butadiene in the presence of $ZnBr_2$ (the interactions present in the transition state for both dienes must be very similar).

The π -facial diastereoselectivities achieved in the reactions of quinones 3 with these dienes in the presence of ZnBr₂, although moderate (d.e. 40-72%), were surprising considering the distance existing between the reactive double bond C₅-C₆ and the chiral sulfinyl inductor. This remote asymmetric induction could be a consequence of a stereoelectronic approach control with the origin in a non-equivalent extension of the π orbital system⁷ imposed by the remote asymmetric sulfoxide determining the preferred diene approach from one of the diastereotopic faces of the chelate between 3 and ZnBr₂. A similar asymmetric distribution of the π -orbital could be invoked to explain the π -facial diastereoselectivity observed in cycloadditions of 1 with cyclopentadiene^{1a} which was previously justified on steric grounds. We are now undertaking a study of Diels-Alder reactions on compound 1 and other sulfinylquinones such as sulfinylnaphthazarins⁸ to obtain experimental evidence supporting this hypothesis.

Acknowledgements: We thank Dirección General de Investigación Científica y Técnica (Grant PB92-0161 and PB93-0257) for financial support.

REFERENCES AND NOTES

- †.- In memory of Prof. Francisco Fariña.
- a) Carreño M.C.; García Ruano J.L.; Urbano A. Tetrahedron Lett. 1989, 30, 4003. b) Carreño M.C.; García Ruano J.L.; Urbano A. J. Org. Chem. 1992, 57, 6870. c) Alonso, I; Carretero, J.C.; García Ruano, J.L. J.Org. Chem. 1994, 59, 1499, and references cited therein. d) Arai, Y.; Matsui, M.; Koizumi, T.; Shiro, M. J. Org. Chem. 1991, 56, 1983. e) De Lucchi, O. Tetrahedron Lett. 1987, 28, 107. f) De Lucchi, O.; Lucchini, V.; Marchioro, C.; Valle, G.; Modena, G. J. Org. Chem. 1986, 51, 1457. g) Maignan, C.; Guessous, A.; Rouessac, F. Tetrahedron Lett. 1984, 25, 1727.
- a) Arce, E; Carreño, M.C.; Cid, M.B.; García Ruano, J.L. J. Org. Chem. 1994, 59, 3421. b) Aversa, M.C.; Bonaccorsi, P.; Gianetto, P.; Jones, D.N. Tetrahedron Asymmetry 1994, 5, 805. c) Adams, H.; Jones, D.N.; Aversa, M.C.; Bonaccorsi, P.; Gianetto, P. Tetrahedron Lett. 1993, 34, 6481. d) Gosselin, P.; Bonfand, E.; Hayes, P.; Retoux, R.; Maignan, C. Tetrahedron Asymmetry 1994, 5, 781.
- a) Carreño M.C.; García Ruano J.L.; Mata J.M.; Urbano A. Tetrahedron 1991,47, 605. b) Carreño M.C.; García Ruano J.L.; Urbano A. Synthesis 1992, 651.

- 4.-All new compounds described in this paper were fully characterized on the basis of their IR, ¹H-NMR (200 MHz, CDCl₃), ¹³C-NMR (50.3 MHz, CDCl₃) spectral data and elemental analysis / HRMS. 2a: m.p. 179-81°C (CH₂Cl₂); $[\alpha]_D^{20}$ -97° (c=1, acetone); ¹H-NMR δ 10.85 (broad s, 1H, asociated OH), 7.74 and 7.31 (AA'BB' system, 4H, tolyl group), 7.01 and 6.77 (AB system, 2H, J = 9.1 Hz, H5 and H₆), 5.44 (broad s, 1H, OH), 2.40 (s, 3H, CH₃Ar); 13 C-NMR (d₆-acetone) δ 154.1, 145.1, 143.0, 139.1, 131.3, 130.3, 126.0, 120.6, 120.2, 119.1, 21.4. 2b; m.p. 156-8°C (CCl₄); [α]_D²⁰-107° (c=0.4, CHCl₃); ¹H-NMR δ 10.43 (broad s, 1H, asociated OH), 7.49 and 7.18 (AA'BB' system, 4H, tolyl group), 6.82 and 6.64 (AB system, 2H, J = 8.8 Hz, H₅ and H₆), 6.08 (broad s, 1H, OH), 2.68 (m, 2H, Et), 2.38 (s, 3H, CH₃Ar), 1.12 (t, 3H, J = 7.4 Hz, Et); ¹³C-NMR δ 153.7, 146.7, 142.6, 140.0, 135.1, 130.3, 128.8, 126.3, 120.7, 117.5, 21.4, 20.4, 13.8. 3a: mp 118-20°C (ethylic ether); [α]_D²⁰ +640° (c=0.1, CHCl₃); ¹H-NMR δ 7.73 and 7.34 (AA'BB' system, 4H, tolyl group), 6.93 and 6.79 (AB system, 2H, J = 9.1 Hz, H₅ and H₆), 2.41 (s, 3H, CH₃Ar); ¹³C-NMR δ 181.0, 177.7, 142.4, 137.8, 137.1, 135.8, 132.8, 131.5, 130.1, 125.0, 21.4. **3b**: mp 73-5°C (ethylic ether); $[\alpha]_D^{20}$ +1325° (c=0.2, CHCl₃); ¹H-NMR § 7.64 and 7.31 (AA'BB' system, 4H, tolyl group), 6.79 and 6.69 (AB system, 2H, J = 10.0 Hz, H₅ and H₆), 3.10 (q, 2H, J = 7.4 Hz, Et), 2.39 (s, 3H, CH₃Ar), 1.12 (t, 2H, J = 7.4 Hz, Et); ¹³C-NMR δ 185.7, 184.4, 152.2, 141.5, 136.9, 136.1, 130.1, 130.0, 125.8, 124.8, 21.3, 17.1, 14.5. 4a: $[\alpha]_D^{20}$ +132° (c=0.75, CHCi₃); ¹H-NMR δ 7.67 and 7.30 (AA'BB' system, 4H, tolyl group), 6.00 (dd, 1H, J = 2.8 and 5.6 Hz, H₆), 5.85 (dd, 1H, J = 2.8 and 5.6 Hz, H₇), 3.51 (m, 2H, H₅ and H₈) 3.34 (2dd, 2H, J = 3.7 and 8.5 Hz, H_{4a} and H_{8a}), 2.40 (s, 3H, CH₃Ar), 1.53 (dt, 1H, J = 1.7 and 9.0 Hz, H_{9b}), 1.43 (m, 1H, H_{9a}); ¹³C-NMR δ 192.3, 189.7, 152.0, 148.1, 142.1, 138.0, 135.6, 134.9, 129.9, 125.1, 50.2, 50.1, 49.6, 49.2, 48.3, 21.4. 5a: [α]_D²⁰ +90° (c=0.5, CHCl₃); ¹H-NMR δ 7.67 and 7.30 (AA'BB' system, 4H, tolyl group), 6.05 (dd, 1H, J = 2.8 and 5.6 Hz, H₆), 5.93 (dd, 1H, J = 2.8 and 5.6 Hz, H₇), 3.51 (m, 2H, H₅ and H₈), 3.34 (m, 2H, H_{4a} and H_{ka}) 2.40 (s, CH₃Ar), 1.53 (m, H_{9b}), 1.43 (m, H_{9a}). 4b: mp 102-4°C (hexane); $[\alpha]_D^{20}$ +375° (c=0, 2, CHCl₃); ¹H-NMR δ 7.58 and 7.30 (AA'BB' system, 4H, tolyl group), 5.92 (dd, 1H, J = 3.0 and 5.7 Hz, H₆), 5.57 (dd, 1H, J = 3.0 and 5.6 Hz, H₇), 3.48 and 3.42 (2m, 2H, H_{4a} and H_{8a}), 3.25 (m, 2H, H₅ and H₈), 3.04 (q, 2H, J = 7.4 Hz, Et), 2.40 (s, 3H, CH₃Ar), 1.50-1.35 (m, 2H, H_{9a} and H_{9b}), 0.98 (t, 3H, J = 7.4 Hz, Et); ¹³C-NMR δ 197.2, 196.1, 157.9, 151.8, 141.2, 139.6, 135.1, 135.0, 129.8, 124.8, 49.3, 49.1, 49.0, 48.9, 48.7, 21.3, 16.7, 13.8. 5b: $[\alpha]_D^{20}$ +296° (c=0.5, CHCl₃); ¹H-NMR δ 7.60 and 7.29 (AA'BB' system, 4H, tolyl group), 6.06 (t, 2H, J = 1.8 Hz, H₆ and H₇), 3.50 (m, 2H, H₅ and H₈), 3.24 and 3.17 (2dd, 2H, J = 3.8 and 8.7 Hz, H_{4a} and H_{8a}), 2.97 (m, 2H, Et), 2.39 (s, 3H, CH₃Ar), 1.54 and 1.40 (2dt, 2H, J = 2.0 and 8.9 Hz, H_{9a} and H_{9b}), 1.03 (t, 3H, J = 7.3 Hz, Et); ¹³C-NMR δ 197.1, 195.9, 158.2, 151.5, 141.2, 139.6, 135.3, 135.2, 129.8, 124.7, 49.1, 49.0 (2C), 48.9, 48.8, 21.2, 17.2, 13.6.
- Chemical correlation of 4a with (S₅,R₈,S₈)-3-chloro-5,8-methano-2-p-tolylsulfinyl-5,8-dihydro-1,4-5.naphthalene (10), obtained from (R4a,S5,R8,S8a,SS)-5,8-methano-2-p-tolylsulfinyl-4a,5,8,8atetrahydro-1,4-naphthoquinone (8)^{1a} whose stereochemistry had been unequivocally established by Xray⁶, was carried out as follows:

The treatment of 8 with K₂CO₃ and further CAN oxidation yielded 9 which upon reaction with TiCl4 evolved into 10. The same compound 10 was isolated in the treatment of 4a with K_2CO_3 . As the stereochemistry of C-5 and C-8 of 8 and 4a remained unaltered along the transformations, we could assign the 5S,8R configuration to 10 and then, the R4a,S5,R8,S8a,S5 configuration to 4a.

- Carreño, M.C.; Fischer, J.; García Ruano J.L.; Urbano, A. unpublished results. б.-
- 7.-8.-
- Inagaki, S.; Fujimoto, H.; Fukui, K. J. Am. Chem. Soc. 1976, 98, 4054. a) Carreño, M.C.; García Ruano, J.L.; Urbano, A. Tetrahedron 1994, 50, 5013. b) Carreño, M.C.; García Ruano, J.L.; Urbano, A. Tetrahedron Lett. 1994, 35, 3789.

(Received in UK 20 September 1994; revised 25 October 1994; accepted 26 October 1994)